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BSC with 

Probability that more than 
half of the bits are in error
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BSC with Repetition Code ( )

For repetition code, it seems that we have 
to sacrifice the rate to reduce 

Designing Channel Encoder

rows

columns

Each “?” can be 0 or 1.
So, there are

possibilities.

possibilities

Choose from 
possibilities to be 

used as codewords.

But we don’t want to use the 
same codeword to represent 
two different info blocks.
So, actually, we need to 
consider

possibilities.

for , 

for , 

[Section 3.5]
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close all; clear all;

% EES315 2020 Example 6.58
% EES452 2020 Examples 3.62, 3.67
C = [0 0 0 0 0; 1 1 1 1 1]; % repetition code

p = (1/100);
PE_minDist(C,p)

>> PE_minDist_demo1

ans =
9.8506e-06

Code C is defined by putting all its (valid) 
codewords as its rows. For repetition 
code, there are two codewords: 00..0 and 
11..1. 

Crossover probability of the binary 
symmetric channel.

[Section 3.5]
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function PE = PE_minDist(C,p)
% Function PE_minDist computes the error probability P(E) when code C
% is used for transmission over BSC with crossover probability p.
% Code C is defined by putting all its (valid) codewords as its rows.
M = size(C,1); % the number of (valid) codewords
k = log2(M);
n = size(C,2); 

% Generate all possible n-bit received vectors
Y = dec2bin(0:2^n-1)-'0';

% Normally, we need to construct an extended Q matrix. However, because
% each conditional probability in there is a decreasing function of the
% (Hamming) distance, we can work with the distances instead of the
% conditional probability. In particular, instead of selecting the max in
% each column of the Q matrix, we consider min distance in each column.
dminy = zeros(1,2^n); % preallocation
for j = 1:(2^n)

% for each received vector y,
y = Y(j,:);
% find the minimum distance 
% (the distance from y to the closest codeword)
d = sum(mod(bsxfun(@plus,y,C),2),2);
dminy(j) = min(d);

end

% From the distances, calculate the conditional probabilities.
% Note that we compute only the values that are to be selected (instead of
% calculating the whole Q first).
n1 = dminy; n0 = n-dminy;
Qmax = (p.^n1).*((1-p).^n0);
% Scale the conditional probabilities by the input probabilities and add 
% the values. Note that we assume equally likely input.
PC = sum((1/M)*Qmax);
PE = 1-PC;
end

PE_minDist.m [Section 3.5]
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BSC with 

repetition code with in Exercise 9 (2019)
0.0579

0.1040

0.2000

Optimal codes that we found in 
Exercise 9 (2019)

Example given in Exercise 9 (2019)

0.2832 

0.2218 
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BSC with 

There are other codes that have 
rate Here (and in 
Exercise 9 (2019)), we consider 
all the codes with and 

.
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BSC with 

Note that is not the 
only family of codes that give rate 

, 
also corresponds to rate 

Will these codes have smaller ?
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BSC with 

Note that is not the 
only family of codes that give rate 

, 
also corresponds to rate 

At rate = 0.2, 
Shannon found that we can make 
as small we want (as long as it is ). 
With large enough, there will be a 
code that gives the desired (or 
smaller). 
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Reliable communication (at a particular rate) means 
arbitrarily small error probability can be achieved (at that 
rate).

In our example, Shannon showed that reliable 
communication is achievable at rate .

Turn out that reliable communication is not achievable at rate 
.
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BSC with 

Here we consider all the 
codes with and 

.
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BSC with Note that is 
not the only family of codes 
that give rate 

, 
also corresponds 

to rate 

At rate , 
Shannon found that we 
cannot make as small 
as we want; even when we 
use large .

So, how can we determine 
which rate can have 
arbitrarily small ?
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BSC with 
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Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: [bpcu]

Arbitrarily small error 
probability can be achieved.

Shannon [1948] showed that these two quantities are actually the same.

[Section 4.2]

[Section 4.3]



4.2 Operational Channel Capacity

4.16. In Chapter 3, we have studied how to compute the error probability
P (E) for digital communication systems over DMC. At the end of that
chapter, we studied block encoding where the channel is used n times to
transmit a k-bit info-block.

In this section, our consideration is “reverse”.

4.17. In this and the next sections, we introduce a quantity called channel
capacity which is crucial in benchmarking communication system. Recall
that, in Chapter 2 where source coding was discussed, we were interested in
the minimum rate (in bits per source symbol) to represent a source. Here,
we are interested in the maximum rate (in bits per channel use) that can
be sent through a given channel reliably.

4.18. Here, reliable communication means arbitrarily small error prob-
ability can be achieved.

� This seems to be an impossible goal.

◦ If the channel introduces errors, how can one correct them all?

* Any correction process is also subject to error, ad infinitum.

Definition 4.19. Given a DMC, its “operational” channel capacity
is the maximum rate at which reliable communication over the channel is
possible.

� The channel capacity is the maximum rate in bits per channel use at
which information can be sent with arbitrarily low error probability.

4.20. Claude Shannon showed, in his 1948 landmark paper, that this op-
erational channel capacity is the same as the information channel capacity
which we will discuss in the next section. From this, we can omit the words
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“operational” and “information” and simply refer to both quantities as the
channel capacity.

Example 4.21. In Example 4.35, we will find that the capacity of a BSC
with crossover probability p = 0.1 is approximately 0.531 bits per channel
use. This means that for any rate R < 0.531 and any error probability
P (E) that we desire, as long as it is greater than 0, we can find a suitable
n, a rate R encoder, and a corresponding decoder which will yield an error
probability that is at least as low as our set value.

� Usually, for small desired value of P (E), we may need large value of n.

Example 4.22. Repetition code is not good enough.
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Figure 17: Performance of repetition coding with majority voting at the decoder

� Continue from Example 4.21.

� In Figure 17b, with repetition code, trying to reduce the error proba-
bility to be less than the original p even a little bit already causes the
rate to drop far below the capacity level indicated by the red horizontal
line.

� In fact, for any rate > 0, we can see from Figure 17b that commu-
nication system based on repetition coding is not “reliable” according
to Definition 4.18. For example, for rate = 0.02 bits per channel use,
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repetition code can’t satisfy the requirement that the error probability
must be less than 10−15. In fact, Figure 17b shows that as we reduce
the error probability to 0, the rate also goes to 0 as well. Therefore,
there is no positive rate that works for all error probability.

� However, because the channel capacity is 0.531 [bpcu], there must ex-
ist other encoding techniques which give better error probability than
repetition code.

◦ Although Shannon’s result gives us the channel capacity, it does
not give us any explicit instruction on how to construct codes which
can achieve that value.

4.3 Information Channel Capacity

4.23. In Section 4.1, we have studied how to compute the value of mutual
information I(X;Y ) between two random variables X and Y . Recall that,
here, X and Y are the channel input and output, respectively. We have also
seen, in Example 4.14, how to compute I(X;Y ) when the joint pmf matrix
P is given. Furthermore, we have also worked on Example 4.15 in which the
value of mutual information is computed from the prior probability vector
p and the channel transition probability matrix Q. This second type of
calculation is crucial in the computation of channel capacity. This kind
of calculation is so important that we may write the mutual information
I(X;Y ) as I(p,Q).

Definition 4.24. Given a DMC channel, we define its “information” chan-
nel capacity as

C = max
p

I (X;Y ) = max
p

I
(
p,Q

)
, (34)

where the maximum is taken over all possible input pmfs p.

� Again, as mentioned in 4.20, Shannon showed that the “information”
channel capacity defined here is equal to the “operational” channel
capacity defined in Definition 4.19.

◦ Thus, we may drop the word “information” in most discussions of
channel capacity.

73




